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 FOREWORD 

The IPCC’s Task Force on National Greenhouse Gas Inventories has, as part of its mandate, the objective of 
encouraging users to adopt the IPCC methodological guidelines for estimating national inventories of 
greenhouse gases. This report is one of a series, developed through expert meetings, which aims to assist users 
of the guidelines by addressing specific problem areas. 

In this case the expert meeting focused on dealing with uncertainty and with emission inventory validation. Since 
the 2006 IPCC Guidelines for National Greenhouse Gas Inventories was produced the science of remote 
sensing and ambient measurements has developed through the use of techniques such as inverse modeling to 
increase the potential applicability of the techniques to inventory validation. In addition, it has become clear that 
some users of the guidelines on uncertainty management need additional help to apply the methods in the 
guidelines correctly. This meeting aimed at considering both issues.    

We would like to thank all those involved in this meeting. In particular we would like to express our sincere 
thanks and appreciation to TNO and the Government of the Netherlands for their support by hosting this 
meeting. 

 

  

Thelma Krug 

Co-Chair Task Force Bureau 

Taka Hiraishi 

Co-Chair Task Force Bureau 
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Executive Summary 

The meeting reviewed both the use of the current IPCC guidelines on uncertainty management and recent 
developments related to inventory validation. 

On the current IPCC guidelines on uncertainty management, the meeting agreed that the current guidelines still 
reflect the state of the art but need to be supplemented by easy-use advice on how to approach uncertainties for 
those with less experience. A first set of Q&A was provided for the TFI web site. 

There was consensus that, while remote sensing, ambient measurement and inverse modelling techniques have 
been successfully demonstrated they are currently not sufficiently developed to provide comprehensive 
verification at the required accuracy, much is to be gained from working together, to improve verification 
techniques as well as gain better understanding of inventory estimates, and of natural emissions and removals. 
The meeting acknowledged that growing international interest in monitoring and verification is increasing the 
importance of dealing properly with uncertainty and is suggesting new initiatives for emissions inventories that 
can improve prospects for independent verification. 

The participants looked forward to future collaboration and identified a number of areas for possible prioritization 
over the next few years and hoped that the group would meet again in a similar forum in say two years’ time to 
review progress.  
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1. Introduction 

The expert meeting of Intergovernmental Panel on Climate Change (IPCC) reviewing the use of the IPCC 
guidance on emission inventories was held in May 2008 in Helsinki, Finland1. The meeting identified uncertainty 
as an area where inventory compilers were having difficulties in following the IPCC Guidelines and Good 
Practice Guidance and suggested holding an expert meeting to produce some additional material to assist 
inventory compilers.  

Subsequently the IPCC’s Task Force on National Greenhouse Gas Inventories (TFI) Bureau decided to expand 
the idea to include the linked concept of validation/verification of emission inventories and convene an expert 
meeting.  

The IPCC expert meeting on Uncertainty and Validation of Emission Inventories was held in Utrecht, the 
Netherlands from 23 to 25 March 2010 and hosted by TNO (Netherlands Organization for Applied Scientific 
Research). A total of 50 participants including IPCC TFI Co-chairs, Task Force Bureau (TFB) members, invited 
experts/researchers and members of Technical Support Unit (TSU) attended the meeting.  

The meeting discussed a number of topics in two main areas: the use of the uncertainty guidance in the IPCC 
Guidelines, and ambient measurements systems (e.g. satellite, aircraft, flux towers, ground based 
measurements etc.) for the validation/verification of emission inventories. 

This report summarizes discussions and conclusions of the meeting, and aims to provide additional information 
to inventory compilers on how they should assess inventory uncertainty at all tiers, how this should be reported 
and how inventories may be validated and verified.   

 

                                                           
1The  IPCC Expert Meeting on IPCC Guidance on estimating emissions and removals of greenhouse gases from land uses such as 

agriculture and forestry 
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2. Summary of Discussions 

 
The meeting was opened by Mr. Taka Hiraishi, IPCC TFI Co-chair. He welcomed all participants and outlined the 
background of the meeting.  

This was followed by the welcome speech of Mrs. Aukje Hassoldt, TNO. She noted the importance of the 
meeting and highlighted the TNO activities on environmental issues including climate change. 

Welcome remarks were followed by introductory and invited presentations. The presentations and discussions 
dealt with a number of topics, specifically: 

 Uncertainty assessments of emission inventories  
 Treatment of uncertainties associated with remote sensing 
 Use of ambient measurements and inverse modelling  
 Current capabilities of ambient measurement systems - e.g. satellite, aircraft, flux towers, ground based 

measurements etc. 
 Anticipated improvements of these systems over time in respect of their capabilities to validate emission 

inventories 
 In the context of specific IPCC categories how can these systems be used to validate emission 

estimates 
In the afternoon session on second day two breakout groups (BOGs) dealing with additional information on 
estimating uncertainties in GHG inventories (BOG1) and use of measurements and/or inverse modelling to 
validate emission inventories (BOG2) were convened to continue further deliberations. The BOGs presented the 
outcome of their discussions to the plenary in the afternoon on the final day.  

 

2.1 Additional information on estimating uncertainties in GHG inventories  

After considering the existing guidance on uncertainties given in the IPCC Guidelines (IPCC 2000, 2003 and 
2006), the information presented and their experience in using the guidelines, the meeting participants came to 
the following conclusions: 

 The guidance on uncertainty assessment provided in the 2006 IPCC Guidelines is technically correct. 
However, it presents a very technical description and therefore an easy-to-use guide is needed to assist 
users new to the topic. This can be written as Q&A and presented as linked pages on the TFI web site. 
A first version of the Q&A is presented in Annex 2. 

 The participants highlighted the increasing emphasis and attention on uncertainty analysis as 
monitoring and verification of emissions are getting more important and financial mechanisms are put 
into place. 

 The participants recognized that finer spatial and temporal resolution, plus inclusion of both 
anthropogenic and natural sources and sinks, might be desirable in emissions inventories in order to 
reduce uncertainty in comparisons with monitored concentrations and to improve prospects for 
independent monitoring and verification. 

 Uncertainty assessment is more than just a calculation of uncertainty range. Users should try to 
understand the reasons for the uncertainty. Scientific understanding of uncertainties and their reasons 
will guide users towards improving emission inventory. 

 

2.2 Use of measurements and/or modelling to validate emission inventories 

The meeting participants considered how existing techniques using remote sensing and ambient data could be 
used to validate or assist inventory compilers, either now or in the foreseeable future.  

There was consensus that, while remote sensing, ambient measurement and inverse modelling techniques have 
been successfully demonstrated they are currently not sufficiently developed to provide a comprehensive routine 
verification at the desired accuracy, much is to be gained from working together, to improve verification 
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techniques as well as gain better understanding of inventory estimates, and of natural emissions and removals. 
The participants felt use of forward transport simulations of inventory-based (bottom-up) and inverse model (top-
down) flux estimations should be conducted and validated against independent observations, as and when 
available. 

The participants looked forward to future collaboration and identified a number of areas for possible prioritization 
over the next few years and hoped that the group would meet again in a similar forum in say two years’ time to 
review progress.  

The meeting also concluded that: 

 Although encouraged rather than required by existing IPCC guidance, verification of GHG inventories, 
(defined here as the comparison of inventory estimates with independent estimates)  is potentially a key 
element of ensuring inventory quality and increasing the confidence of results. This requires 
development of better techniques for observation and interpretation and better understanding of the 
relationship between inventory estimates and natural fluxes. 

 Several techniques are available or planned that show promise for verifying the GHG inventories at 
different scales or levels of aggregation (i.e. regional, national, local or source-specific).  

 These techniques include using measurements of atmospheric concentrations, often combined with 
inverse modelling techniques, and other observations that can be used to estimate the total fluxes of a 
given GHG.  

 Currently, the direct applicability of these  techniques to the GHG inventories  is limited by the density of 
measurements, accuracy of the models, and the ability to attribute fluxes to anthropogenic versus 
natural sources and sinks. Bottom-up information on the fluxes not covered by the GHG inventories will 
be necessary for effective comparisons using these verification techniques.  

 As a consequence, these techniques are at present usually limited to comparisons of the results of 
GHG inventories for selected gases in certain well-sampled regions (e.g. Europe, North America and 
Australia). 

 The research community anticipates that capabilities will improve over time as measurement density 
improves (i.e., through new satellite sensors, expanded surface network and number of gases and 
isotopes sampled), as the atmospheric chemistry and transport and statistical models continue to be 
tested and improved.  

 In order for techniques based on remote sensing (RS) or ambient measurements to be effective in 
verifying GHG inventories, improvement in our abilities to partition the fluxes into different components 
is necessary. Partitioning requires improvements in other observations (e.g. of various ecosystem and 
ocean parameters), integration with flux information and an overall synthesis.  

 It is anticipated that with additional coordination and investment countries could make significant 
progress over the next decade toward a globally linked and integrated observational network. From the 
inventory compilers’ point of view, the key issues include continuity of critical data records, new 
observational capabilities and data sharing.   

 The inventory compiler community and the research communities would both benefit from continued 
discussion of the specific verification needs for GHG inventories and the evolving capabilities of these 
techniques.  In particular, the communities would benefit from having a sustained interaction on specific 
and verification questions so that further research efforts can be policy-relevant. 

 Some RS techniques, particularly for area and area change mapping, are sufficiently well-developed 
today that they could be used in combination with other data (e.g. in-situ measurements and other 
auxiliary information) to improve the quality of GHG inventories directly by contributing activity data (e.g., 
land conversion data). More work needs to be done in improving the availability, accessibility and 
processing of RS information (e.g. data, satellite images) and developing standards. Interpretation and 
data analysis may be resource-intensive.  

 One use of the GHG emissions inventories is to attribute climate change as being anthropogenic per 
Article 2.  Much of the uncertainty in that attribution, particularly at the national level, is now based on 
the inventories. A consistent treatment of uncertainty across both these inventories and inverse 
methods for deriving emissions is necessary for comparison. Also, transparent, research-based 
approach is needed to propagate uncertainties when combining sectoral and regional emissions. 
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 The inventory compiler also needs methods for comparing inventories to inversions.  More research is 
needed to determine how to conduct verification and also case studies demonstrating applications of 
these methods.   

 Some inventory verification challenges are presented below (Table 1)  as an illustrative list of areas in 
which evolving techniques could be employed to verify and raise the quality of GHG inventories: 
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Table 1 Some inventory challenges where these verification techniques could be employed 

Area Identified needs/gaps 

Emissions from the 
use of fluorinated 
gases 

ISSUE: 

Unclear if timing and location of emission estimates are correct.  There is very little 
tracking of activity data for many end-use applications. 

NEED: 

Integrated totals at higher temporal resolution so that the inventory compilers can 
check the rates of emission and timing of release etc.; 

Better spatial resolution  

Fugitive and vented 
CH4 emissions from 
oil and gas systems, 
coal mining and 
landfills 

ISSUE: 

Generic EFs or equivalent fail to characterize emission rates over different spatial 
and temporal scales 

NEED: 

Independent checks on emission factors and emissions estimates, particularly for 
upstream oil and gas production emissions.  

Observations that identify emissions but do not quantify them can also be helpful 
for indicating sources that are currently being missed.   

N2O emissions from 
soils (direct and 
indirect) 

ISSUE: 

N2O emission from soils very uncertain and unverified. So, try meso-scale to 
provide better spatial and temporal integration than plot level data 

NEED: 

Independent quantification of indirect emissions from volatilization and re-
deposition, leaching and run-off. Assessment of emission rates from “other lands” 
e.g., water bodies, coastal areas etc. 

Process-based modeling has also been used successfully to reduce emissions. 
These models may use remote sensing and weather data to provide a more 
precise estimate of emissions. Combining these approaches with mesoscale 
model inversions could lead to more confidence in inventories of soil N2O 
emissions 

Forest fires, biomass 
burning in other land 
uses and other 
disturbances 

ISSUE: 

Estimates of emissions from biomass burning in non-forest land uses and other 
disturbances are very uncertain and unverified. 

NEED: 

Identification of area burnt and mass of biomass fuel available for combustion, and 
combustion emission factors; 

Actual measurement of N2O and CH4 from fires. Measurement of CO, NOx etc. 
could serve as a proxy.  

Carbon Capture and 
Storage sites 

ISSUE: 

Leakage from geological storage sites are challenging to identify and even more 
difficult to quantify.  Leakage may occur over a wide area which needs to be 
completely covered. 

NEED: 

Accurate time series of isotopically distinguishable background emission rates at 
appropriate scales (storage sites i.e. 10-100 km) 

Ability to identify leaks  

Quantification of diffuse emissions 
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Overall inventory 
totals by gas 

ISSUE: 

Independent check on emission inventories currently largely lacking. 

NEED: 

Independent estimates of national fluxes of GHG 

Peatlands ISSUE: 

Diffuse emissions occurring over a wide area are poorly quantified and understood. 
Generic EFs fail to characterize the relationship to management practices 

NEED: 

Focus on estimating total CH4 and N2O emissions 

Methane from 
permafrost melting 
and clatharates 

ISSUE: 

A poorly understood source with no current estimation method. 

NEED: 

Magnitude of, and changes in, emissions from permafrost melting and methane 
clatharates (not necessarily an inventory issue) 

Black carbon and 
aerosols 

ISSUE: 

Spatial and temporal resolution of emission important. Can be very transient, 
making comparison difficult. Sources not well understood. 

NEED: 

Measurements to validate emission estimates 

Fluxes on coastal 
oceans 

ISSUE: 

Not currently included in inventories and data required to calibrate estimates. 

NEED: 

Concentration data. Inventory guidance needed; separation of anthropogenic and 
natural likely to be challenging 
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Annex 2. Questions and Answers 
 

1. Key Definitions 

1.1. How do we understand “uncertainty” in emission inventories? How to distinguish between variability and 
uncertainty? 

Uncertainty: Lack of knowledge of the true value of a variable. Uncertainty comprises two parts:  

 Random variation around a mean value. Generally these can be quantified and the IPCC guidelines give methods 
deal with the random errors. 

 Bias cannot be quantified and so the IPCC guidelines give approaches to minimise bias.  

Uncertainty depends on the analyst’s state of knowledge, which in turn depends on the quality and quantity of applicable 
data as well as knowledge of underlying processes and inference methods. Uncertainty may arise for an inability to quantify 
the variable. For example, soil nitrous oxide emissions can vary from year to year due to weather conditions, and if emission 
factors do not account for weather, then some of the uncertainty will be due to variability in emissions across time (and 
space) that is not quantified. 

Variability: How a variable differs from time to time, place to place or between members of a population. A number of 
source categories, mainly in the AFOLU sector may show temporal variability on long time scales, due to for instance wild 
fires, rain fall, temperatures etc.  

Uncertainty: Lack of knowledge of the true value of a variable that can be described as a probability density 
function (PDF) characterising the range and likelihood of possible values. Uncertainty depends on the analyst’s 
state of knowledge, which in turn depends on the quality and quantity of applicable data as well as knowledge of 
underlying processes and inference methods. 

Variability: Heterogeneity of a variable over time, space or members of a population (...). Variability may arise, for 
example, due to differences in design from one emitter to another (inter-plant or spatial variability) and in operating 
conditions from one time to another at a given emitter (intra-plant variability). Variability is an inherent property of 
the system or of nature, and not of the analyst..  

IPCC 2006, Vol. 1,  Ch 3, Section 3.1.3 Key concepts and terminology 

 

1.2. What is the difference between accuracy and precision? Does uncertainty assessment relate to both? 

Essentially accuracy is a measure of the lack of bias of an estimate while precision is a measure of the repeatability of the 
result. In general lack of precision is caused by random variation in input data (e.g. experimental error) while lack of 
accuracy results from biases from incomplete understanding (or modelling) of the process. So, for example: 

 Estimates of CO2 emissions from fuel use can be based on measurements of the carbon content of the fuel. 
Reductions in the random error in the measurements will lead to improvements in the precision of the result; 
however the accuracy may be limited by a bias caused by an incomplete knowledge of the oxidation rate of the 
combustion process. 

 Emissions or removals from forests are modelled by changes in carbon stocks. The precision achieved will be the 
result of the uncertainty derived from the experimental error of the measured values of the various parameters 
used. On the other hand, there may be inaccuracy caused by such things as the measured parameters not being 
measured under the same climatic and ecological situation as the forest area being estimated; by an incomplete 
knowledge of all the processes removing carbon from the forest; or by the model of carbon stocks being 
incomplete. All these causes of inaccuracy lead to bias. 

 Emissions of F-gases for refrigeration are estimated from monitoring the imports, exports, production and use of 
the chemicals. Data on these product flows often come from surveys, all of which are subject to random survey 
errors, which lead to a lack of precision. While biases in the surveys (e.g. caused by missing some sectors) or 
incorrect understanding of leakage processes lead to inaccuracy and bias. 

The process of uncertainty estimation aims to quantify precision. Before this uncertainty estimation is performed all known or 
suspected biases should be removed or corrected. 

Accuracy is improved by evaluating methods and assumptions as well as input data to ensure they are free from bias. 

“Accuracy: Agreement between the true value and the average of repeated measured observations or estimates 
of a variable. An accurate measurement or prediction lacks bias or, equivalently, systematic error. 

Precision: Agreement among repeated measurements of the same variable. Better precision means less random 
error. Precision is independent of accuracy”. 
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IPCC 2006, Vol. 1, Ch 3, Section 3.1.3 Key concepts and terminology 

“The quantitative uncertainty analysis tends to deal primarily with random errors based on the inherent variability 
of a system and the finite sample size of available data, random components of measurement error, or inferences 
regarding the random component of uncertainty obtained from expert judgement. In contrast, systematic errors 
that may arise because of imperfections in conceptualisation, models, measurement techniques, or other systems 
for recording or making inferences from data, can be much more difficult to quantify. As mentioned in Section 3.5, 
Reporting and Documentation, it is good practice for potential sources of uncertainty that have not been quantified 
to be described, particularly with respect to conceptualisation, models, and data and to make every effort to 
quantify them in the future.  

Good practice requires that bias in conceptualisations, models, and inputs to models be prevented wherever 
possible, such as by using appropriate QA/QC procedures. Where biases cannot be prevented, it is good practice 
to identify and correct them when developing a mean estimate of the inventory. In particular, the point estimate 
that is used for reporting the inventory should be free of biases as much as it is practical and possible. Once 
biases are corrected to the extent possible, the uncertainty analysis can then focus on quantification of the random 
errors with respect to the mean estimate”. 

IPCC 2006, Vol. 1, Ch 3, Section 3.1.4 Basis for uncertainty analysis 

 

1.3. How would uncertainty in activity data and/or emission factors be reflected in the emission estimate? 

Where uncertainty in emission factors and activity data arise from random factors (e.g. experimental error, survey errors) 
then this will lead to a quantifiable uncertainty in the result. However if this uncertainty is systematic (e.g. where emission 
factors are estimated from a sub-population and so are not directly applicable to the entire population; or where a survey 
does not randomly sample the entire population, e.g. it misses small plant) it might lead to bias. Random errors are 
expressed as an uncertainty range. Bias should be minimised by thorough evaluation of the data and assumptions used, 
good QA/QC and review. In some cases, it is possible to correct for biases such as errors in measurements or analytical 
methods where the error has been quantified and can be used to adjust the estimates. 

 

2. Why do we need uncertainty assessment of emission inventories? 

2.1. Why uncertainty assessment is considered important in GHG inventory preparation? How should the result of 
uncertainty assessment be used? 

Uncertainty assessment is needed to help guide inventory improvements. 

“An uncertainty analysis should be seen, first and foremost, as a means to help prioritise national efforts to reduce 
the uncertainty of inventories in the future, and guide decisions on methodological choice. For this reason, the 
methods used to attribute uncertainty values must be practical, scientifically defensible, robust enough to be 
applicable to a range of categories of emissions by source and removals by sinks, methods and national 
circumstances, and presented in ways comprehensible to inventory users.” 

 IPCC 2006, Vol.1, Ch 3, Section 3.1.1 Overview of uncertainty analysis 

 

“… Uncertainty information is not intended to dispute the validity of the inventory estimates, but to help prioritise 
efforts to improve the accuracy of inventories in the future and guide decisions on methodological choice, …” 

IPCC 2000, Ch 6, Section 6.1 Overview 

 

Uncertainty information is used principally to identify planned improvements in emission inventories.Uncertainty assessment 
is also important in comparisons with atmospheric measurements and modelling. Without uncertainty estimates, it is difficult 
to determine the extent to which atmospheric measurements (such as atmospheric inversions of CO2 concentrations) can be 
compared to emission estimates. Uncertainty of estimates or measurements may also assist in informing decisions about 
efforts to mitigate emissions. 

 

2.2. Can we reduce uncertainties by using higher tier methods to estimate GHG emissions/removals? Sometimes 
higher tier methods result in wider confidence interval. How should this be interpreted? 

Moving to a higher tier method should result in a better estimate with reduced uncertainty. However note that: 

Sometimes the higher tier method better estimates uncertainty revealing the Tier 1 result underestimated the true 
uncertainty.  
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Using higher tiers aims to reduce bias (e.g. it uses more disaggregated data to move to a more detailed stratification) but 
this can sometimes decrease precision, giving a higher uncertainly value. 

“Choice of methodological tier for emissions and removals estimation can affect the uncertainty analysis in two 
different ways. Firstly, moving to higher tier inventory methods should typically reduce uncertainties, provided the 
higher tier methods are well implemented, because they should reduce bias and better represent the complexity of 
the system. Secondly, moving to higher tier methods may result in increased estimates of uncertainty in some 
circumstances. Often, this increase in the estimated uncertainty does not actually represent a decrease in 
knowledge; rather, it typically reveals a more realistic acknowledgment of the limitations of existing knowledge. 
This may occur where there was an incomplete accounting of the greenhouse gas emissions in the lower tier 
method, or where application of higher tier methods reveals additional complexity and uncertainties that were not 
fully apparent in the lower tier method. This really means that the uncertainty was underestimated previously and 
moving to the higher tier method in reality produces a more accurate estimate of uncertainty. In some cases, an 
increase in uncertainty may occur for one inventory development method versus another because each method 
has different data requirements.” 

IPCC 2006, Vol. 1, Ch 3, Section 3.1.7, Implications of methodological choice 

 

2.3. Can we compare uncertainty estimates between counties? 

Yes – the numbers should be comparable if both countries have followed the guidelines correctly. While Approach 2 should 
give a quantitatively better estimate of the confidence limits Approach 2 and Approach 1 give comparable results especially 
with respect to ranking the contributions to overall inventory uncertainty. Large differences in inventory uncertainties should 
reflect real differences in the uncertainties of the estimates. However, in practice, there are wide differences between the 
results that are not easily explained. 

An inventory with a high uncertainty may result from a preponderance of sources with intrinsically high uncertainties (e.g. 
land use sectors) or from a lack of knowledge of the input data more generally. High uncertainty at the national, annual level 
is often the result of large variability (see Q&A 1.2). 

 

2.4. How can we ensure consistency in uncertainty assessment among different sectors? 

There is a need to ensure correct application of guidelines on uncertainty across sectors and source categories. All the 
inventory compilers for different sectors in the team should have close consultation and discussion so that they arrive at 
common understanding of “uncertainty”. The uncertainty estimation should be explicitly included within the inventory 
planning process, based on a common understanding of uncertainty, and using similar definitions and ways to quantify 
uncertainty across sectors and source categories.  

  

3. How do we you perform an uncertainty analysis as part of emission inventories? 

3.1. How do you start an uncertainty assessment? 

a. Decide on approach to use (look at expertise and resources available) 

b. Collect uncertainty information for all data inputs. Where Approach 2 is used full probability density function (PDF) 
will be needed for activity data, emission factors and any other parameters used. If a full PDF is not available a 
normal or lognormal PDF can be based on the mean and uncertainty. Knowledge of the causes of uncertainty will 
inform this step. 

c. Decide how to aggregate sources and sinks to minimise impact of correlations (or for Monte-Carlo develop method 
to incorporate correlations in activity data and emission factors)   

d. Combine uncertainty information to estimate overall inventory uncertainty either using error propagation or Monte-
Carlo methods as decided in step ”a” 

e. Report result and document method 

f. Use uncertainly information in developing improvement plan for inventory 

 

3.2. How should the data and information on uncertainty be collected? 

Uncertainty information should be collected together with activity and emission factor data. Generally the experts providing 
both types of data have the best information and knowledge on the weaknesses and uncertainties in their data. 
Communication on understanding of uncertainties and the objectives of the uncertainty assessment with the data providers 
is crucial. In some cases data providers might be reluctant to provide uncertainty data. In such cases the inventory compiler 
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could use a formal or informal “expert elicitation” process to help the experts to quantify their understanding of the quality of 
the data in terms of uncertainty ranges and/or PDFs. 

As a fall back option when no data have been included by the data providers, the default uncertainty ranges given in the 
2006 IPCC Guidelines could be used for a first uncertainty assessment. If these source categories appear to have major 
contributions to the overall inventory uncertainty, further work on these uncertainties could be planned for next inventory 
cycles. 

 

 “…Ideally, the inventory compiler should collect activity data, emission factors, and uncertainty information at the 
same time because this is the most efficient strategy.” 

IPCC 2006, Vol. 1, Ch 1 p 1.11, Box 1.1 

 

.“… Activity data are often collected and published regularly by national statistical agencies, which may have 
already assessed the uncertainties associated with their data as part of their data collection procedures. These 
previously developed uncertainty estimates can be used to construct PDFs. This information will not necessarily 
have been published, so it is recommended to contact the statistical agencies directly. Since economic activity 
data are not usually collected for the purpose of estimating greenhouse gas emissions and removals, it is good 
practice to assess the applicability of the uncertainty estimates before using them.” 

IPCC 2006, Vol. 1, Ch 3, p 3.18 

 

Anytime you have a survey or a census you must have a point estimate and an uncertainty interval. Surveys need a valid 
statistical design so that variances and co-variances can be empirically derived. Surveys may use stratification to sample 
more efficiently. Samples should be randomized within the strata. Weights may also be needed depending on the 
representativeness of each sample. An example of a statistically-based survey is the US National Resources Inventory. In 
order to start collecting such uncertainty data: 

 Consult with your statistical agencies to collect this data 
 Always ask for point estimates and uncertainty data, if necessary ask for uncertainty information in a second step 
 If you don't get it: use your own expert judgment as a start; you can always improve in the next inventory cycle! 
 As a start you can use information in the 2006 Guidelines and EFDB 
 Make comparisons with other datasets and other countries. An example of collection of uncertainty information 

can be a comparison of two databases e.g. If in a country fuel consumption is recorded in energy balance and in 
parallel of CLRTAP emissions database  

 Be aware that experts might be optimistic/subjective with respect to the quality of their data 

                           

3.3. How should we choose the approach to uncertainty assessment, Approach 1 or Approach 2? Can we use both 
approaches in the same GHG inventory? 

You will always need to consider the resources and expertise available. Approach 1 requires fewer resources and limited 
expertise compared with Approach 2.  

Approach 1 will usually be good enough if you only use uncertainty for inventory improvement. Approach 2 will be more 
appropriate for scientific applications where there are high uncertainty ranges and correlations.  

Approach 2 can be nested in an Approach 1 for the overall inventory uncertainty assessment. Approach 2 can for instance 
be used for specific complex calculations in restricted source or sink categories. The resulting uncertainty range for this 
source or sink then can be used as input into Approach 1 to combine these results with the entire inventory. 

Where Approach 2 is used the guidelines also encourage the use of Approach 1 as a QA/QC check. 

 “Where the conditions for applicability are met (relatively low uncertainty, no correlation between sources except 
those dealt with explicitly by Approach 1), Approach 1 and Approach 2 will give identical results. However, and 
perhaps paradoxically, these conditions are most likely to be satisfied where Tier 2 and Tier 3 methods are widely 
used and properly applied in the inventory, because these methods should give the most accurate and perhaps 
also the most precise results. There is therefore no direct theoretical connection between choice of Approach and 
choice of Tier. In practice, when Tier 1 methods are applied, Approach 1 will usually be used while the ability to 
apply Approach 2 is more likely where Tier 2 and 3 methods are being used, moreover for quantifying the 
uncertainty of emissions/removal estimates of complex systems such as in the AFOLU Sector. When Approach 2 
is selected, as part of QA/QC activities inventory agencies also are encouraged to apply Approach 1 because of 
the insights it provides and because it will not require a significant amount of additional work. Where Approach 2 is 
used, its estimates of overall uncertainty are to be preferred when reporting uncertainties.”  



19 

 

IPCC 2006, Vol. 1, Ch 3, Subsection 3.2.3.5 Guidance on choice of Approach  

 

 “In some cases, most of the category uncertainties in an inventory might be estimated using Approach 2, with 
relatively few estimated using Approach 1. It is possible to incorporate Approach 1 estimates of uncertainty for 
some categories into an Approach 2 methodology for combining uncertainties for the total inventory. This is done 
by using the uncertainty half-range obtained from Approach 1 to specify an appropriate PDF model to represent 
uncertainty for each category as part of the Monte Carlo simulation.”  

IPCC 2006, Vol. 1, Ch 3, Subsection 3.2.3.3 Hybrid combinations of Approaches 1 and 2  

 

3.4. What are the key differences between Approach 1 and Approach 2 

While Approach 1 technically is limited to specific circumstances the 2006 IPCC Guidelines give ways to deal with these 
situations and so it gives useful results for all emission inventories. Approach 2 does not have these limitations.  

Approach 1 is only strictly correct when uncertainties are less than 0.3, distributions are normal and there are no 
correlations. However, the 2006 IPCC Guidelines give an empirical equation for dealing with large uncertainties and the 
impact of correlations can be reduced by grouping data. 

Approach 2 can deal with all these situations. Approach 2 requires significantly more data and resources. It needs not just 
the uncertainty but also the probability density function, which can be non-symmetrical. Approach 2 will be required if a 
realistic quantitative uncertainty range is to be calculated in cases where large uncertainties in activity data and / or 
emission factors occur. 

Where the standard deviation for any parameter is greater than about 0.3, normal probability functions will give non-
negligible probabilities for negative values. In real life such negative values can obviously not occur. Another option would 
be to use a log-normal distribution in this case. 

 

3.5. How to interpret and use the output data of the uncertainty assessment 

A Tier 2 KCA uses the uncertainty data together with the magnitude of each source or sink category to highlight those that 
contribute to the overall inventory uncertainty. Thus improvements can be targeted to reduce overall inventory uncertainty. 

Both approaches give estimates of the confidence intervals of the inventory that can be used in verification (comparison with 
other independent estimates). 

 

4. Pitfalls 

4.1. In the AFOLU sector, Approach 1 uncertainty assessment sometimes using Equation 3.2 sometimes results in 
extremely large uncertainty values because the denominator becomes close to zero when emissions and removals 
are nearly equal. Is this appropriate? Can we somehow avoid it? 

This is because uncertainty is presented as a relative uncertainty (a fraction uncertainty divided by the point estimate). As 
sources and sinks balance the point estimate goes to zero but the absolute value of the uncertainties might still be 
significant. The calculated value of the relative uncertainty in such cases becomes very large and is not meaningful. It may 
be better to present absolute uncertainty values when emissions and removals nearly balance. Just show the absolute 
values of 95% confidence interval. These absolute values can be combined with absolute values of the rest of the inventory 
to give overall inventory uncertainty. 
 

4.2. How should we treat correlation between factors in uncertainty assessment? 

Assume there is no correlation unless there is evidence of correlation. If there is evidence, correlation should be taken into 
account. See IPCC 2006, Vol.1, Ch 3, p 3.25-3.26 “Dependence and correlations among inputs”.  

An example where correlation is likely to be important would be land use data. As the area of one land use is increasing, the 
areas of other land uses will by necessity be decreasing (assuming the land base is constant across the time series, which 
is a good practice). This relationship creates correlations in the data which can be derived if the land survey has a 
statistically-based design. In this case, the compiler would need to derive the covariances across all combination of land use 
and time in order to fully address the uncertainty. 
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